home *** CD-ROM | disk | FTP | other *** search
- /*
- * Copyright (c) 1985 Regents of the University of California.
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms are permitted
- * provided that this notice is preserved and that due credit is given
- * to the University of California at Berkeley. The name of the University
- * may not be used to endorse or promote products derived from this
- * software without specific prior written permission. This software
- * is provided ``as is'' without express or implied warranty.
- *
- * All recipients should regard themselves as participants in an ongoing
- * research project and hence should feel obligated to report their
- * experiences (good or bad) with these elementary function codes, using
- * the sendbug(8) program, to the authors.
- */
-
- #ifndef lint
- static char sccsid[] = "@(#)expm1.c 5.2 (Berkeley) 4/29/88";
- #endif /* not lint */
-
- /* EXPM1(X)
- * RETURN THE EXPONENTIAL OF X MINUS ONE
- * DOUBLE PRECISION (IEEE 53 BITS, VAX D FORMAT 56 BITS)
- * CODED IN C BY K.C. NG, 1/19/85;
- * REVISED BY K.C. NG on 2/6/85, 3/7/85, 3/21/85, 4/16/85.
- *
- * Required system supported functions:
- * scalb(x,n)
- * copysign(x,y)
- * finite(x)
- *
- * Kernel function:
- * exp__E(x,c)
- *
- * Method:
- * 1. Argument Reduction: given the input x, find r and integer k such
- * that
- * x = k*ln2 + r, |r| <= 0.5*ln2 .
- * r will be represented as r := z+c for better accuracy.
- *
- * 2. Compute EXPM1(r)=exp(r)-1 by
- *
- * EXPM1(r=z+c) := z + exp__E(z,c)
- *
- * 3. EXPM1(x) = 2^k * ( EXPM1(r) + 1-2^-k ).
- *
- * Remarks:
- * 1. When k=1 and z < -0.25, we use the following formula for
- * better accuracy:
- * EXPM1(x) = 2 * ( (z+0.5) + exp__E(z,c) )
- * 2. To avoid rounding error in 1-2^-k where k is large, we use
- * EXPM1(x) = 2^k * { [z+(exp__E(z,c)-2^-k )] + 1 }
- * when k>56.
- *
- * Special cases:
- * EXPM1(INF) is INF, EXPM1(NaN) is NaN;
- * EXPM1(-INF)= -1;
- * for finite argument, only EXPM1(0)=0 is exact.
- *
- * Accuracy:
- * EXPM1(x) returns the exact (exp(x)-1) nearly rounded. In a test run with
- * 1,166,000 random arguments on a VAX, the maximum observed error was
- * .872 ulps (units of the last place).
- *
- * Constants:
- * The hexadecimal values are the intended ones for the following constants.
- * The decimal values may be used, provided that the compiler will convert
- * from decimal to binary accurately enough to produce the hexadecimal values
- * shown.
- */
-
- #if defined(vax)||defined(tahoe) /* VAX D format */
- #ifdef vax
- #define _0x(A,B) 0x/**/A/**/B
- #else /* vax */
- #define _0x(A,B) 0x/**/B/**/A
- #endif /* vax */
- /* static double */
- /* ln2hi = 6.9314718055829871446E-1 , Hex 2^ 0 * .B17217F7D00000 */
- /* ln2lo = 1.6465949582897081279E-12 , Hex 2^-39 * .E7BCD5E4F1D9CC */
- /* lnhuge = 9.4961163736712506989E1 , Hex 2^ 7 * .BDEC1DA73E9010 */
- /* invln2 = 1.4426950408889634148E0 ; Hex 2^ 1 * .B8AA3B295C17F1 */
- static long ln2hix[] = { _0x(7217,4031), _0x(0000,f7d0)};
- static long ln2lox[] = { _0x(bcd5,2ce7), _0x(d9cc,e4f1)};
- static long lnhugex[] = { _0x(ec1d,43bd), _0x(9010,a73e)};
- static long invln2x[] = { _0x(aa3b,40b8), _0x(17f1,295c)};
- #define ln2hi (*(double*)ln2hix)
- #define ln2lo (*(double*)ln2lox)
- #define lnhuge (*(double*)lnhugex)
- #define invln2 (*(double*)invln2x)
- #else /* defined(vax)||defined(tahoe) */
- static double
- ln2hi = 6.9314718036912381649E-1 , /*Hex 2^ -1 * 1.62E42FEE00000 */
- ln2lo = 1.9082149292705877000E-10 , /*Hex 2^-33 * 1.A39EF35793C76 */
- lnhuge = 7.1602103751842355450E2 , /*Hex 2^ 9 * 1.6602B15B7ECF2 */
- invln2 = 1.4426950408889633870E0 ; /*Hex 2^ 0 * 1.71547652B82FE */
- #endif /* defined(vax)||defined(tahoe) */
-
- double expm1(x)
- double x;
- {
- static double one=1.0, half=1.0/2.0;
- double scalb(), copysign(), exp__E(), z,hi,lo,c;
- int k,finite();
- #if defined(vax)||defined(tahoe)
- static prec=56;
- #else /* defined(vax)||defined(tahoe) */
- static prec=53;
- #endif /* defined(vax)||defined(tahoe) */
- #if !defined(vax)&&!defined(tahoe)
- if(x!=x) return(x); /* x is NaN */
- #endif /* !defined(vax)&&!defined(tahoe) */
-
- if( x <= lnhuge ) {
- if( x >= -40.0 ) {
-
- /* argument reduction : x - k*ln2 */
- k= invln2 *x+copysign(0.5,x); /* k=NINT(x/ln2) */
- hi=x-k*ln2hi ;
- z=hi-(lo=k*ln2lo);
- c=(hi-z)-lo;
-
- if(k==0) return(z+exp__E(z,c));
- if(k==1)
- if(z< -0.25)
- {x=z+half;x +=exp__E(z,c); return(x+x);}
- else
- {z+=exp__E(z,c); x=half+z; return(x+x);}
- /* end of k=1 */
-
- else {
- if(k<=prec)
- { x=one-scalb(one,-k); z += exp__E(z,c);}
- else if(k<100)
- { x = exp__E(z,c)-scalb(one,-k); x+=z; z=one;}
- else
- { x = exp__E(z,c)+z; z=one;}
-
- return (scalb(x+z,k));
- }
- }
- /* end of x > lnunfl */
-
- else
- /* expm1(-big#) rounded to -1 (inexact) */
- if(finite(x))
- { ln2hi+ln2lo; return(-one);}
-
- /* expm1(-INF) is -1 */
- else return(-one);
- }
- /* end of x < lnhuge */
-
- else
- /* expm1(INF) is INF, expm1(+big#) overflows to INF */
- return( finite(x) ? scalb(one,5000) : x);
- }
-